An Order Preserving Bilinear Model for Person Detection in Multi-Modal Data

نویسندگان

  • Oytun Ulutan
  • Benjamin S. Riggan
  • Nasser M. Nasrabadi
  • B. S. Manjunath
چکیده

We propose a new order preserving bilinear framework that exploits low-resolution video for person detection in a multi-modal setting using deep neural networks. In this setting cameras are strategically placed such that less robust sensors, e.g. geophones that monitor seismic activity, are located within the field of views (FOVs) of cameras. The primary challenge is being able to leverage sufficient information from videos where there are less than 40 pixels on targets, while also taking advantage of less discriminative information from other modalities, e.g. seismic. Unlike state-of-the-art methods, our bilinear framework retains spatio-temporal order when computing the vector outer products between pairs of features. Despite the high dimensionality of these outer products, we demonstrate that our order preserving bilinear framework yields better performance than recent orderless bilinear models and alternative fusion methods. Code is available at https://github.com/oulutan/OP-Bilinear-Model

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Damage detection of multi-girder bridge superstructure based on the modal strain approaches

The research described in this paper focuses on the application of modal strain techniques on a multi-girder bridge superstructure with the objectives of identifying the presence of damage and detecting false damage diagnosis for such structures. The case study is a one-third scale model of a slab-on-girder composite bridge superstructure, comprised of a steel-free concrete deck with FRP rebars...

متن کامل

STRUCTURAL DAMAGE PROGNOSIS BY EVALUATING MODAL DATA ORTHOGONALITY USING CHAOTIC IMPERIALIST COMPETITIVE ALGORITHM

Presenting structural damage detection problem as an inverse model-updating approach is one of the well-known methods which can reach to informative features of damages. This paper proposes a model-based method for fault prognosis in engineering structures. A new damage-sensitive cost function is suggested by employing the main concepts of the Modal Assurance Criterion (MAC) on the first severa...

متن کامل

Damage identification of structures using second-order approximation of Neumann series expansion

In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...

متن کامل

FEM Updating for Offshore Jacket Structures Using Measured Incomplete Modal Data

Marine industry requires continued development of new technologies in order to produce oil. An essential requirement in design is to be able to compare experimental data from prototype structures with predicted information from a corresponding analytical finite element model. In this study, structural model updating may be defined as the fit of an existing analytical model in the light of measu...

متن کامل

An Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data

The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.07721  شماره 

صفحات  -

تاریخ انتشار 2017